Solution to Assignment 4

15.5

(24). The region is over a rectangle which can be decomposed into two trianlges D_{1} and $D_{2} . D_{1}$ has vertices at $(0,0),(1,0),(1,2)$ and D_{2} has vertices at $(0,0),(1,2),(0,2)$. Over D_{1}, the region is described by $0 \leq z \leq 1-x$. Over D_{2}, it is given by $0 \leq z \leq(2-y) / 2$. Hence the volume of the region is

$$
\iint_{D_{1}} \int_{0}^{1-x} 1 d z d A(x, y)+\iint_{D_{2}} \int_{0}^{(2-y) / 2} 1 d z d A(x, y)=\cdots
$$

(27). Let $\mathbf{v}_{1}=(0,2,0)-(1,0,0)=(-1,2,0)$ and $\mathbf{v}_{2}=(0,0,3)-(1,0,0)=(-1,0,3)$. Then $(a, b, c)=\mathbf{v}_{1} \times \mathbf{v}_{2}=(6,3,2)$. The equation of the plane passing through $(1,0,0),(0,2,0),(0,0,3)$ is given by $6 x+3 y+2 z=d$. Setting $(x, y, z)=(1,0,0)$, the equation is $6 x+3 y+2 z=6$. Regarding it as a region over the triangle T in the $x y$-plane with vertices at $(0,0),(1,0),(0,2)$, the volume of the tetrahedron is

$$
\iint_{T} \int_{0}^{(6-6 x-3 y) / 2} d z d A(x, y)=\cdots
$$

(29) The region is described by $0 \leq z \leq \sqrt{1-x^{2}}$ where (x, y) satisfies $x^{2}+y^{2} \leq 1, x, y \geq 0$. Therefore, the volume of this region is

$$
8 \times \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} 1 d z d y d x=\cdots=16 / 3
$$

(42) Change the order of $d y d x$ to $d x d y$:

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{1} 12 x z e^{z y^{2}} d y d x & =\int_{0}^{1} \int_{0}^{\sqrt{y}} 12 x z e^{z y^{2}} d x d y \\
& =\int_{0}^{1} 6 y z e^{z y^{2}} d y
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{x^{2}}^{1} 12 x z e^{z y^{2}} d y d x d z & =\int_{0}^{1} \int_{0}^{1} 6 y z e^{z y^{2}} d y d z \\
& =\left.3 \int_{0}^{1} e^{z y^{2}}\right|_{0} ^{1} d z \\
& =3 \int_{0}^{1}\left(e^{z}-1\right) d z \\
& =3(e-2)
\end{aligned}
$$

Supplementary Problems

1. Find the equations of the planes passing through the origin and (a) $(1,2,3),(0,-2,0)$ and (b) $(0,2,-1),(3,0,5)$.

Solution. (a) $(1,2,3) \times(0,-2,0)=(6,0,-2)$. The equation is $6 x-2 z=0$ or $3 x-z=0$.
(b) $(0,2,-1) \times(3,0,5)=(10,-3,-6)$. The equation is $10 x-3 y-6 z=0$.
2. Find the equation of the plane passing the points $(1,0,-1),(4,0,0),(6,2,1)$.

Soluton. Take $\mathbf{u}_{0}=(4,0,0)$. (You can take any one of these three points as the base point.) Then $\mathbf{v}_{1}=(1,0,-1)-(4,0,0)=(-3,0,-1)$, and $\mathbf{v}_{2}=(6,2,1)-(4,0,0)=(2,2,1)$. $\mathbf{v}_{1} \times \mathbf{v}_{2}=(2,1,-6)$. The equation is $2 x+y-6 z=d$. Since ($4,0,0$) belongs to the plane, $d=2 \times 4+0-6 \times 0=8$. The equation of this plane is $2 x+y-6 z=8$.

